The Nantucket Conservation Foundation's property bordering West Polpis Harbor contains a diverse collection of natural areas, including grassy meadows, beaches, salt marshes, freshwater bogs, shrublands, and hardwood forests.

Many types of nesting and migrating birds feed on organisms and organic matter found in the marsh's damp, spongy peat and mud flats. Pluviers, yellowlegs, dowitchers, whitethroats, and sandpipers represent some of the shorebirds that feed on the small marine organisms brought in on each rising tide. American oystercatchers use their large, orange bills to pry open mollusks and crustaceans found along the marsh's edge, while great blue herons, snowys, egrets, black crowned night herons, and great egrets feed on small fish that live in the tidal creeks and pools. Because salt marshes are relatively rare on Nantucket, this site is an important feeding and resting area for these and many other species of birds.

These diverse natural communities at Masquetuck provide a wide variety of habitat for many species of wildlife and plants that occur on the property. Under the Foundation's ownership and management, this area will continue to be protected as valuable open space, as well as provide passive recreation, scientific research, and educational opportunities for the public to learn from and enjoy.
The Nantucket Conservation Foundation’s property bordering West Polpis Harbor contains a diverse collection of natural areas, including grassy meadows, beaches, salt marshes, freshwater bogs, shrublands, and hardwood forests. Known as the Masquetuck Reservation, this property is named after the Wampanoag name for the Quaise Reservoir, after the Wampanoag name for the Quaise Pastures Road, off of the Polpis Road. The Foundation acquired the property in 1990, when the former owners, Robert and Cynthia Jan, donated a portion of the land and the Foundation purchased the balance for $650,000 with gifts made to the Foundation's Land Fund. Because of the generosity and foresight of all those who contributed towards the effort to acquire this area, it is now protected for the benefit of future generations.

One of the unique features of the Masquetuck Reservation is the number of diverse habitats, or groupings of plants and animals, that can be found in a relatively small area. Between the end of Quaise Pastures Road and the west end of West Polpis Harbor sits a narrow, grassy field that slopes downward towards an extensive salt marsh system. The bog contains an unusual bog ecosystem that changes through periodic mowing. Without recurrent management, this grassland would soon be invaded by thickets of bayberry, arrowwood, elderberry, and huckleberry, species which now exist along the edges of the meadow bordering the hardwood forest. The process by which natural communities change over time is known as succession, and Masquetuck provides several examples of communities that are at different stages in this progression.

Hardwood Forest

The hardwood forest ecosystems dominate this property. Forests composed of 40-50 foot high stands of red oak, white oak, black tupelo, and American hazelnut, species which now exist along the edges of the meadow bordering the hardwood forest. The process by which natural communities change over time is known as succession, and Masquetuck provides several examples of communities that are at different stages in this progression.

Hardwood forest ecosystems dominate this property. Forests composed of 40-50 foot high stands of red oak, white oak, black tupelo, and American hazelnut, species which now exist along the edges of the meadow bordering the hardwood forest. The process by which natural communities change over time is known as succession, and Masquetuck provides several examples of communities that are at different stages in this progression.

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

natural or human processes. Red oak, hickory, American beech, and white oak trees dominate the drier areas of the forest, while black tupelo, sassafras, and red maple, are found in pockets of wet, low areas. Some of the trees at Masquetuck are very old. Because much of the land on the island was cleared and used for agriculture at some point during the last three hundred years, large, old trees are relatively rare on Nantucket. Growing below the tree canopy and forming the next vertical layer in the forest is a jumble of hardwoods, including black tupelo, blueberry, and winterberry. These shrubs form extensive, efficient root systems that obtain oxygen and nutrients with the aid of beneficial fungi associated with their root hairs. These shrubs also conserve energy by having evergreen leaves, thus eliminating the need to grow new leaves each spring. Special enzymes produced by the plant then "digest" their captives, providing a source of scarce minerals and nutrients. The bog wetland at this site is a fascinating habitat that is best viewed at a distance from the trail that runs along the southeastern edge of the property. The surface of the bog and its associated plant species is fragile and susceptible to disturbance by even minor foot traffic. All poison ivy and poison sumac are abundant.

Salt Marsh

In the eastern portion of the property, a long, thin peninsula of upland extends along the edge of West Polpis Harbor, bordering an extensive salt marsh system to the west. This unique, wind sheltered maritime forest contains mature sassafras, white oak, and black tupelo trees, surrounded on three sides by harbor and salt marsh. The narrow beach facing the harbor makes an excellent location for viewing harbor seals, porpoises, and marine birds and waterfowl. Tidal cycles that create the twice daily ebbing and flooding tide make salt marshes one of the most productive and valuable ecosystems on earth. Each ebbing tide brings in a flux of new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult

Salt Marsh with Greenovia

In the southern portion of the property is a natural freshwater bog wetland. This small kettlehole depression in the landscape likely formed when the water of a large block of ice left behind by the last glacier created a depression that now intersects the water table, keeping this depression consistently wet and allowing wetland vegetation to grow. The bog contains dense mats of Sphagnum, a group of mosses that are capable of holding up to new nutrients, algae, bacteria, fungi, and tiny marine organisms that form the base of a very complex and productive food chain. Many varieties of marine animals that spend their adult